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The bulk dynamics of immiscible polymer blends during flow is relatively well understood, especially
when the system contains Newtonian components. Recently, a number of studies have focused on flow of
immiscible blends in confined geometries. In that case, the morphology development is not only affected
by the material characteristics and the type of flow, but also by the degree of confinement. Here, we
present an overview on the morphology development in immiscible two-phase blends in confined shear
flow. Firstly, we focus on the typical microstructures that are observed in confined dilute blends.
Secondly, in order to understand those peculiar morphologies, the systematic studies on single droplets
in confined shear flow are reviewed. In addition to the experimental work, theoretical, phenomeno-
logical, and numerical models that include the effects of confinement are discussed.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The past decade has witnessed a rapid development of micro-
and nanotechnology that is being used in a broad variety of
applications. This has led to a multitude of integrated microdevices
that combine, for instance, pumps, separation units, and valves into
a lab-on-a-chip [1]. Quite rarely, the fluids of interest in such
devices are simple single-phase liquids. On the contrary, many
systems in chemical and/or biochemical technology consist of
multiphase fluids, often containing components with a complex
rheology. From a technological point of view, microchannel flows
are often used to generate small volumes of emulsions with well-
controlled droplet sizes and droplet size distributions. These
droplet-based multiphase flows have been utilized in processes
such as, for instance, microencapsulation, micromixing, and
microreaction [2]. In the latter case, the small droplets are almost
ideal chemical reactors characterized by fast heat transfer and
efficient mass transfer. In literature, various other applications have
also been described, and undoubtedly, many more will follow [2].

To optimize these microfluidic applications, a scientific
understanding of the relationships between the rheology of the
components, the kinematic conditions, and the microstructure
development in confined geometries is essential. This morphology
development is however complex and influenced by a multitude of
parameters. In order to fully understand the underlying physics,
þ32 16 32 29 91.
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several model type problems have been studied. Earlier research
primarily focused on confined channel flow, a topic that was
thoroughly reviewed by Olbricht [3]. In the last decade, studies on
confined shear flow are prevailing, which will be the topic of this
review. Moreover, we will only consider fully immiscible fluid–fluid
mixtures although it was shown that confinement can have a drastic
effect on the phase behaviour of a blend. For instance, Binder and
co-workers demonstrated, using Monte-Carlo simulations, that in
ultrathin films, thinner than the screening length of excluded
volume interactions, a dramatic enhancement of compatibility
occurs as compared to the corresponding bulk system (e.g. [4,5]).
Moreover, it was demonstrated that the standard concepts of the
theory of polymeric systems, such as the Flory–Huggins theory [6],
fail in highly confined conditions [5]. The situation becomes even
more complicated when differences in wettability between the
confining walls and the blend constituents are taken into account
(e.g. [7–10]). Most of these studies are performed by means of
Monte-Carlo simulations under quiescent conditions, and many of
the conclusions are experimentally difficult to assess. Therefore, we
will not take wetting effects into account in this review.

In the non-confined case, the structural evolution in immiscible
systems is relatively well understood. Especially in the case of
dilute blends consisting of Newtonian components and subjected
to shear flow, both the morphology development and the rheo-
logical behaviour are quite well established. For these dilute
systems, the blend morphology consists of a droplet–matrix
structure. In the absence of buoyancy and inertia effects, the
droplet behaviour is governed by two dimensionless numbers:
p and Ca. p represents the viscosity ratio of the blend, being the
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viscosity of the droplet phase hd with respect to that of the matrix
phase hm. Ca is the capillary number defined as the ratio between
the deforming hydrodynamic stresses and the restoring interfacial
stresses (Ca ¼ Rhm _g=s, with R, _g, and s the droplet radius, shear
rate and interfacial tension respectively). The single droplet
behaviour in Newtonian–Newtonian systems has been thoroughly
reviewed by Rallison [11], Stone [12], and more recently by Guido
and Greco [13]. The rheological behaviour of these simple blends
and its relation with the microstructure have been extensively
investigated both experimentally and theoretically [14]. However,
most industrial systems consist of more complex viscoelastic
components, and the single droplet behaviour in such blends has
therefore received a great deal of attention [13,15]. For these
systems, two additional dimensionless numbers are introduced for
each component: the Deborah number (De ¼ sJ1=2Rh2, with J1

the first normal stress coefficient and h the fluid viscosity), and the
ratio N2/N1, with N1 and N2 the first and second normal stress
differences of the fluid [13,16]. It has been shown that matrix
viscoelasticity substantially influences the steady and transient
droplet dynamics when De� 1. Droplet viscoelasticity seems to
have less effect on the droplet behaviour, at least at non-critical
conditions. The role of N2 on the droplet dynamics is less clear
[13,15,17–20]. To obtain a material with improved properties, the
final goal is often to generate very small droplets dispersed in the
matrix. Therefore, particular interest is going towards compatibi-
lization and morphology stabilization of immiscible blends [15]. At
higher concentrations, hydrodynamic interactions and coalescence
become important, and fibrillar and cocontinuous structures can be
generated [17]. Component viscoelasticity, the presence of com-
patibilizers, and concentration all add additional complexities to
the system, and therefore, the relationships between rheology and
morphology for these systems are not yet fully understood under
bulk conditions.

In the case of microfluidic flow of blends, at least one dimension
d of the flow system is on the micron scale and therefore could
become comparable to the characteristic size of the dispersed
phase (characterized by the droplet diameter 2R). This confinement
effect could drastically influence the physics of the rheological and
morphological changes during flow. In the field of microrheometry,
the different instrumental approaches can roughly be divided into
two groups [21]. On the one hand, there is interfacial rheometry,
which typically involves deformations in domains of a few molec-
ular dimensions. On the other hand, literature focuses on micro-
rheometry, which has recently evolved rapidly due to the
possibility to fabricate microscale devices [21]. These micro-
rheological developments are however beyond the scope of this
review, and an extensive overview is given by Waigh [22].

This review discusses the effect of confinement on the
morphological changes in immiscible blends consisting of New-
tonian components in simple shear flow. In the first part, the
peculiar morphologies observed in dilute confined blends are dis-
cussed. In order to understand the evolution of these morphologies
during flow, single droplet dynamics together with an evaluation of
the various single droplet models is reviewed in the second part.
Concerning the experimental work, literature mainly reports on
studies that use in situ time resolved methods, such as light
microscopy, to gain insight into the relationship between flow and
structure development. These in situ studies have undoubtedly the
advantage that the morphology evolution is examined during flow,
in contrast to ‘postmortem’ techniques such as scanning electron
microscopy in which the morphology can only be viewed after the
sample has been solidified. In situ observation of the morphology of
industrial systems is however often difficult. Limited transparency
and contrast, as well as a too fine microstructure can hamper the
observations. Therefore, model systems with appropriate visco-
elastic and optical properties were selected by several research
teams such that the resulting microstructure can be studied using
light microscopy.

2. Morphology development in dilute confined blends
consisting of Newtonian components

The first systematic experimental studies in confined shear flow
were conducted on dilute blends, rather than on single droplets.
Concentration however adds a complication to the structural
dynamics since deformation and breakup will compete with coa-
lescence. So far, only systems containing Newtonian components
were studied in confined shear flow. The early experiments by
Migler [23] revealed a richness of morphological phenomena.
Migler reported a transition from a dispersed droplet state to
a string-like state in confined flow. Under identical kinematic
conditions in bulk flow, this system would display a droplet–matrix
structure with only slightly deformed ellipsoidal droplets. The
transition occurs when the size of the dispersed droplets becomes
comparable to the gap width. A typical example is shown in Fig. 1. It
displays the morphology evolution which is microscopically
investigated in a Linkam shearing cell after a decrease in shear rate.
Initially, coalescence causes an increase in the average droplet size
(A and B). After some time, a self-organization into pearl necklace
structures occurs (B and C). This pearl necklace pattern, which was
observed by Migler for the first time in liquid–liquid systems, is
seen as a transient stage between the droplet state and the string
state. Next, the aligned droplets coalesce into strings (D) and even
ribbons (E and F), as indicated by the arrow in Fig. 1(E). All strings
have the same width W in the vorticity direction. The string
stabilization is caused by a suppression of the Rayleigh instability
[24] due to confinement. Although the nearby presence of the walls
is essential to keep the strings intact, it is not sufficient. Flow
provides an additional stabilization, as is also the case in the
unconfined situation [25]. In fact, it was experimentally shown that
when the flow is stopped, most of the strings eventually breakup
into droplets [23]. Hence, both confinement and flow are necessary
to prevent string breakup. The suppression of Rayleigh instabilities
by the presence of the walls was confirmed both experimentally
and numerically. Son et al. [26] experimentally investigated the
stability of a polymeric thread embedded in a quiescent matrix
confined between two parallel walls. For a ratio of thread diameter
to gap spacing between 0.33 and 0.77, an initially axisymmetric
thread becomes nonaxisymmetric, the growth rate of the insta-
bilities decreases, and the wavelength increases as compared to the
unconfined situation. Extremely confined strings remained stable
over the entire experimental timescale. Hagedorn et al. [27] used
a Lattice-Boltzmann model to simulate the breakup of threads in
a tube and between parallel plates. The authors reported that
confinement has a similar effect in both type of geometries. They
also pointed out the importance of fluid–substrate thermodynamic
interactions (wetting) in the stabilization of these confined threads.

Pathak et al. [28] stated that the transition of bulk-like behavi-
our to string formation in a confined flow is not only affected by
changing the shear rate for a fixed gap spacing. They demonstrated
that the morphology development is additionally influenced by
the volume fraction of the blend. These authors presented
a morphology diagram for p¼ 1 that describes the microstructure
in confined polydimethylsiloxane/polyisobutylene emulsions in
the parameter space of composition and shear rate for a gap
spacing d of 36 mm. Besides the formation of strings and pearl
necklaces which are seen by Pathak et al. [28] as stable morphologies,
they reported the organization of droplets in distinct layers. The
physics behind the formation of the layered microstructure is not
completely understood at present. However, the number of layers
decreases with increasing degree of droplet confinement and it was
suggested that this is related to two migration effects [28]: drift of



Fig. 1. Kinetics of the droplet to string transition in a polydimethylsiloxane/polyisobutylene blend with a mass ratio of 0.28 dispersed phase and viscosity ratio of unity. Images are
taken in the velocity–vorticity plane (): flow; [: vorticity) at a gap spacing d of 30 mm. The shear rate is reduced at t¼ 0 s from the droplet regime ( _g¼ 4 s�1) to the string regime
( _g¼ 2.5 s�1). (A) and (B) Increase in droplet size. (B) and (C) Pearl necklace formation in the velocity direction. (D) Coalescence into strings. (E) and (F) String–string coalescence into
ribbons. Reprinted figure with permission from Migler KB. Physical Review Letters 86, p. 1023 (2001) [23]. Copyright (2001) by the American Physical Society.
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droplets from the walls towards the centre (wall migration) and
migration towards the walls due to shear-induced droplet colli-
sions, which occurs in a direction perpendicular to the streamlines.
Only a few articles describe experimental studies on wall migration
of droplets in emulsions [29–31]. For instance, King and Leighton
[29] performed experiments on dilute emulsions with a low
viscosity ratio in a Couette flow. They reported drift of droplets
from the walls and accumulation of droplets near the centre of the
gap. A steady-state droplet distribution was reached when a shear-
induced gradient diffusivity balances the wall migration. Good
agreement between their experimental results and a combination
of a linearized form of the migration velocity for a single droplet
[32] and a shear-induced dispersion model [33] was seen [29].
Hudson [31] extended the analysis of King and Leighton [29] by
removing the restriction of linearizing the migration velocity. He
performed migration experiments in a parallel plate device and
stated that the wall migration effect is significant, even when the
droplets are 100 times smaller than the gap. Collision processes in
liquid–liquid dispersions have been reviewed by Chesters [34]. An
expression for the collision frequency per unit volume was given by
Smoluchowski [35], assuming that the droplets are monodisperse
spheres which follow the basic streamlines in simple shear flow.
Pathak et al. [28] argued that geometrical confinement accentuates
the wall migration effect and reduces the number of collisions per
timescale. For a confined droplet in shear flow, they deduced
expressions for the timescales relevant to droplet collisions, based
on the original Smoluchowski equation [35], and to droplet
migration based on the theory of Chan and Leal [32]. It was
reported [28] that the ratio T of the collision timescale to the
migration timescale increases with decreasing shear rate. For shear
rates where T< 1, a two-layer microstructure was seen. In this case,
collisions occur more frequently than migration causing droplets to
accumulate in two distinct layers. When T w O(1), the timescales
for collision and migration are similar. Under these conditions,
a single layer was reported [28].

The deformation of droplets in the parameter space of
confinement, shear rate and concentration was also investigated.
For example, Pathak and Migler [36] reported on the effect of
confinement on droplet deformation in a blend with 9.7 wt%
dispersed phase and a viscosity ratio of unity. The authors stated
that Taylor’s single droplet theory [37,38] still provides a reasonable
estimate of the deformation for Ca< 0.1, as long as the droplet
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diameter is smaller than the gap size (confinement ratio 2R/d< 1).
For droplet dimensions exceeding the gap size, squashed droplets
are formed below the critical capillary number for bulk breakup,
and stable strings with a constant width above the bulk critical
capillary number. Similar experiments were performed by Vanan-
roye et al. [39] on blends with 1–10 wt% dispersed phase and by
Tufano et al. [40] in blends with 10–30 wt% dispersed phase. Both
research teams showed that for larger capillary numbers, the
deformation of droplets is already affected by the presence of the
walls when the confinement ratio 2R/d is approximately 0.3. They
additionally reported that for the confinement ratios under inves-
tigation (up to 2R/d¼ 0.55), the mean droplet size is still governed
by the relations that describe non-confined situations. Vananroye
et al. [39] demonstrated that not only the width of the strings in the
vorticity direction, but also the width of droplets on pearl necklaces
is constant during shear flow irrespective of the droplet size. A
typical example is given in Fig. 2 in which the droplet width W in
the vorticity direction is shown as a function of the droplet diam-
eter 2R for droplets in a 5 wt% emulsion sheared at 0.38 s�1. As can
be seen in Fig. 2 for a gap spacing d of 40 mm, the width W of
droplets remains constant above a critical confinement ratio 2R/d of
roughly 0.4. Tufano et al. [40] showed that this constant width
phenomenon already occurs before the formation of ordered pearl
necklace structures, and that the critical degree of confinement at
which such wall effects become important increases with
decreasing shear rate.

When flow is arrested, the relaxation of droplets on pearl
necklaces could be affected by the presence of the walls. This was
investigated by Vananroye et al. [39] for droplets in a 5 wt% blend
after a shear rate of 0.38 s�1. Their results indicate that confinement
does not have an effect on droplet relaxation, at least for the
conditions under investigation, where the largest droplet had
a confinement ratio 2R/d of 0.55.
3. Single droplet dynamics in confined shear flow

During flow, droplets undergo morphological changes such as
deformation, retraction, breakup, and coalescence. In order to
understand the peculiar structures discussed in the previous
section, relationships between the flow and the structure dynamics
in a confined environment are needed at the level of single
Fig. 2. Droplet width W as a function of the undeformed droplet diameter 2R at a shear
rate of 0.4 s�1 and a viscosity ratio of 0.47 (5 wt% polyisobutylene in poly-
dimethylsiloxane) for gap spacings d of 40 mm and 100 mm. Experiments were per-
formed using a Linkam parallel plate shearing cell. The dashed line represents the
prediction of the Maffettone and Minale model for single ellipsoidal droplets in bulk
shear flow [41,42]. Reprinted figure with permission from Vananroye et al. [43].
Copyright (2006) by Applied Rheology.
droplets. To the authors’ knowledge, the effect of confinement on
shear-induced coalescence on a two-drop level is unexplored.
However, droplet deformation, orientation, retraction, and breakup
have been investigated experimentally, theoretically, and numeri-
cally in confined shear flow.

3.1. Theoretical background

From a theoretical point of view, various attempts have been
made to extend existing models to include the effect of confine-
ment on the dynamics of single droplets in shear flow. The shape of
moderately deformed droplets is generally described by the three
droplet axes L, B and W, assuming an ellipsoid. The droplet orien-
tation is expressed by means of the orientation angle q, which is the
angle between the longest droplet axis L and the flow direction. The
magnitude of the deformation is commonly quantified by means of
the deformation parameter D ¼ L� B=Lþ B. A schematic repre-
sentation of a deformed droplet in a simple shear flow is shown in
Fig. 3.

For nearly spherical droplets, a theoretical solution for the shape
of a droplet interacting with two parallel shearing walls was
obtained by Shapira and Haber [44]. They solved the momentum
and continuity equation with the Lorentz reflection approximation
[45], using only three reflections. Therefore, the results are only
applicable for small confinement ratios 2R/d. An analytical
expression for the droplet deformation DSH, of the first order in Ca,
was obtained:

DSH ¼ DTaylor

"
1þ Cs

1þ 2:5p
1þ p

�
R
d

�3
#

(1)

with

DTaylor ¼ Ca
16þ 19p
8ð1þ pÞ sin q cos q (2)

Cs is a parameter that depends on the relative position of the droplet
between the walls and grows considerably when the droplet
approaches one of the two walls. In all experimental studies, care
was taken to position the droplet symmetrically between the two
confining walls. For that case, a value of Cs of 5.699 was reported
[44]. DTaylor is the deformation parameter obtained from the Taylor
small-deformation bulk theory [37,38]. Eq. (1) predicts that the
additional effect of the walls on the magnitude of the deformation
scales with the ratio of droplet radius R to gap width d to the
power 3. The droplet shape however, remains ellipsoidal and
unaltered with respect to the Taylor small-deformation prediction
Fig. 3. Schematic representation of a deformed droplet with the geometrical param-
eters in shear flow: (a) velocity–vorticity plane (top view); (b) velocity–velocity
gradient plane (side view).
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for bulk shear flow. As in this first-order bulk theory, a constant
orientation angle q of 45� is predicted. Chan and Leal [32] studied
wall effects on the deformation of a sheared droplet when both
the droplet and the matrix fluid are second-order fluids. They did
not obtain explicit expressions for the droplet deformation as a
function of viscosity and confinement ratios. But for the Newtonian
limit, the values for the shape factor Cs, calculated at R/d¼ 0.1 for
three different droplet locations within the gap, are in agreement
with the values of Shapira and Haber [44].

The Taylor bulk theory is derived for small deformations and
viscosity ratios around 1. To extend the applicability of Eq. (1) to
viscosity ratios different from 1 and to large deformations,
Vananroye et al. [46] proposed to replace the Taylor bulk defor-
mation parameter DTaylor with the steady-state deformation
expression DMM of the model of Maffettone and Minale [41,42]. This
leads to a combined MMSH model with deformation parameter
DMMSH:

DMMSH ¼ DMM

"
1þ Cs

1þ 2:5p
1þ p

�
R
d

�3
#

(3)

with

DMM ¼
f2MMCaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2
1MM þ Ca2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
1MM þ

�
1� f 2

2MM

�
Ca2

r (4)

f1MM ¼
40ðpþ 1Þ

ð2pþ 3Þð19pþ 16Þ (5)

f2MM ¼
5

2pþ 3
þ 3Ca2

2þ 6Ca2
(6)

The original Maffettone–Minale model [41,42] is a phenomenolog-
ical model for the dynamics of a single Newtonian drop in
a Newtonian matrix subjected to a generic bulk flow. It has been
proven that this model satisfactorily describes the droplet
dynamics in bulk shear flow [41,46–48]. The droplet shape is
assumed to remain ellipsoidal at all times and is described by
a second rank symmetric, positive definite tensor S. The dynamics
of S is determined by the competing actions of viscous flow and
interfacial tension. The parameters f1MM and f2MM are derived so
that the model recovers the small-deformation limit of Taylor
[37,38]. Similar to the approach of Vananroye et al. [46], the Sha-
pira–Haber theory was extended to describe the deformation of
confined droplets in systems with one viscoelastic component [49].
In bulk shear flow, droplet and especially matrix viscoelasticity can
substantially alter the droplet deformation and orientation [13].
Therefore, the bulk Taylor deformation parameter was replaced
with the deformation parameter obtained from bulk phenomeno-
logical deformation models for systems containing one viscoelastic
component, such as the modified Minale model [18,19]. With this
approach, only the effect of component viscoelasticity on the
unbounded deformation is taken into account, while the Shapira–
Haber correction factor for wall effects is derived for Newtonian
components.

Despite of its relative success in describing the droplet defor-
mation, a major drawback of the Shapira–Haber theory [44] and its
aforementioned extensions is the fact that no predictions of the
droplet dynamics under transient flow conditions can be made.
Recently, the phenomenological Maffettone–Minale model [41,42]
was extended by Minale to the case of a generic confined flow [50].
The dynamic equation for S of the Maffettone–Minale model was
kept unaltered but adapted expressions for the functions f1 and f2,
which now also depend on the ratio R/d, were proposed. Thereto,
the confined version of the model is forced to recover the small-
deformation limits of Shapira and Haber [44]. In that way, the ratio
between f1 and f2 was imposed. Minale [50] proposed expressions
for f1 and f2, consisting of the Maffettone–Minale parameters f1MM

and f2MM corrected with a confinement factor that is proportional
to (R/d)3:

f1 ¼
f1MM�

1þ Cs

�
R
d

�3

f1c

� (7)

f2 ¼ f2MM

 
1þ Cs

�
R
d

�3

f2c

!
(8)

To resolve the remaining degree of freedom in the expressions for f1
and f2, the steady-state model predictions were fitted to the
experimental results of Vananroye et al. [46] and Sibillo et al. [51].
Expressions for the correction factors f1c and f2c as a function of
viscosity ratio p were obtained for p between 0.3 and 5. With this
confined version [50] of the Maffettone–Minale model [41,42], the
droplet deformation as well as the droplet orientation can be
obtained. In addition, the droplet response to transient flow
conditions, such as e.g. start-up or cessation of shear flow, can be
predicted. Critical conditions for breakup can also be derived from
the model, in which an indefinite droplet deformation is associated
with supercritical conditions.

Although providing predictions on the droplet deformation and
orientation under a broad range of conditions, the quantitative
applicability of the available models for confined droplet dynamics
remains restricted to ellipsoidal droplet shapes, and hence, to low
values of Ca and low confinement ratios. In order to cover the entire
spectrum of capillary numbers, including conditions close to
breakup, numerical simulations are needed. In addition, velocity
and pressure fields, which become accessible with numerical
simulations, could provide valuable information to unravel the
underlying physics of the observed peculiar phenomena (see
further). Janssen and Anderson [52] used a Boundary-Integral-
Method (BIM) to simulate the 3D droplet deformation and breakup
of a Newtonian droplet in a Newtonian matrix for confined shear
flow at a viscosity ratio of 1. To take into account the presence of the
walls, they used an additional wall term in the Green’s functions, as
derived by Jones et al. [53] for a droplet in a Poiseuille flow between
two parallel plates. Simultaneously, Renardy [54] used a Volume-
Of-Fluid method (VOF) to simulate the 3D dynamics of a Newtonian
droplet in a Newtonian matrix at a confinement ratio 2R/d of 0.68
and a viscosity ratio of 1. In these simulations, the VOF method was
combined with the parabolic reconstruction of the interface shape
in the surface tension force (PROST [55]) or alternatively the
continuous surface formulation (CSF [56]) with the piecewise linear
interface reconstruction scheme (PLIC [57]). Recently, Janssen and
Anderson extended their Boundary-Integral-Method for droplets
between two parallel walls to the non-unit viscosity ratio case [58].

3.2. Comparison with experimental evidence

3.2.1. Steady-state droplet deformation and orientation
From an experimental point of view, a large number of studies

on droplet deformation in confined shear flow have been per-
formed. They show a wide variety of wall effects on the single
droplet dynamics. The first evaluation of the Shapira–Haber theory
[44] was performed by Sibillo et al. [51], for a system consisting of
equiviscous Newtonian components. A high precision sliding plate
device, equipped with a microscope that translates together with
the moving plate, was used to visualize a single droplet in a boun-
ded shear flow. As demonstrated in Fig. 4, good agreement between
the theoretical deformation parameter (Eq. (1)) and experimental
results was obtained. Even for confinement ratios 2R/d as high as



Fig. 4. Comparison between the experimental deformation parameter and Eq. (1) as
a function of the ratio of droplet radius to gap width a/h(¼ R/d) at p¼ 1. Microscopic
images in the velocity–velocity gradient plane at Ca¼ 0.1 for a/h determined by the
corresponding numbers in the graph. Reprinted figure with permission from Sibillo V,
Pasquariello G, Simeone M, Cristini V, and Guido S. Physical Review Letters 97, 054502
(2006) [51]. Copyright (2006) by the American Physical Society.

Fig. 5. Comparison between the experimental deformation parameter and Eq. (3)
(MMSH model) as a function of the confinement ratio 2R/d at p¼ 5.2. Reprinted figure
with permission from Vananroye et al. [46]. Copyright� 2007 by The Society of
Rheology, Inc. All rights reserved.

Fig. 6. Comparison between the experimental dimensionless droplet axes (dots), the
Shapira–Haber theory (dashed lines) and the confined Minale model (full lines) at
p¼ 2 and 2R/d¼ 0.79. With kind permission from Springer Science þ Business Media:
Rheologica Acta, A phenomenological model for wall effects on the deformation of an
ellipsoidal drop in viscous flow, 47, 2008, p. 667, Minale M., Figure 6 [50]. Copyright
(2008).
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0.8, where the mathematical solution method used to obtain Eq. (1)
is no longer valid, experiments and predictions nicely match.
Whereas the Shapira–Haber theory [44] only predicts confinement
effects on the magnitude of the deformation, at high confinement
ratios, Sibillo et al. [51] clearly observed distortions from the
ellipsoidal droplet shape, as shown by the microscopy images in
Fig. 4. Vananroye et al. [46] performed a systematic study on the
steady-state droplet deformation in confined shear flow, using
a counter-rotating parallel plate device. They studied systems with
viscosity ratios between 0.3 and 5. It was shown that, above
a confinement ratio 2R/d of 0.3, both the droplet deformation and
the droplet orientation towards the flow direction are systemati-
cally increased with respect to the bulk case. It was demonstrated
that the differences between the bulk and the confined droplet
deformation augment with increasing viscosity ratio. This trend is
correctly captured by the Shapira–Haber model [44] and Eq. (3) was
shown to do a relatively good job in describing the experimental
deformation parameter, especially at the highest viscosity ratios. An
example of a comparison between Eq. (3) and the experimental
results is shown in Fig. 5.

By extending the Maffettone–Minale model to include
confinement effects, Minale [50] was able to quantitatively predict
the droplet axes L, B, and W and the droplet orientation angle q for
confined droplets in Newtonian–Newtonian systems, as long as the
deviation from an ellipsoidal shape remained limited [50]. As an
example, Fig. 6 shows a comparison between the experimentally
obtained dimensionless droplet axes and the model predictions for
a viscosity ratio of 2. Both experiments [46,59] and the model
[50,59] show that wall effects on the orientation angle are more
pronounced at the lowest viscosity ratios, whereas the deformation
is more affected at high viscosity ratios.

The steady-state deformation in confined droplet–matrix
systems with one viscoelastic component was studied by Verhulst
et al. [49]. At a viscosity ratio of 1.5 and a Deborah number of 1, they
observed similar trends for the confinement effect as in fully
Newtonian systems. To describe the deformation parameter as
a function of confinement ratio, the bulk Taylor deformation
parameter in Eq. (1) was replaced with that of the bulk phenom-
enological modified Minale model [18,19] for systems with one
viscoelastic component. Although only the effects of component
viscoelasticity on the unbounded droplet deformation were taken
into account, the model predictions nicely matched the experi-
mental results.

A quantitative comparison between the steady state experi-
mentally observed deformation at different Ca-numbers and the
simulations of Janssen and Anderson [52] has been performed by
Vananroye et al. [60], for a viscosity ratio of 1. Contrary to the
confined Minale model [50] and the Shapira–Haber model [44], the
BIM is capable of predicting the full sigmoidal steady-state droplet
shape, as illustrated in Fig. 7. The simulations also predict an
increase in droplet deformation and more orientation towards the
flow direction with increasing degree of confinement, which is all
in line with experimental observations. It is proposed by the
authors that the changed droplet dynamics under confined



Fig. 7. Comparison between experimental data (a) and BIM simulation results (b) for
the steady-state droplet shape in the velocity–velocity gradient plane at p¼ 1 and 2R/
d¼ 0.83. Reprinted with permission from Vananroye et al. [60]. Copyright (2008) by
The American Institute of Physics.
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conditions is mainly caused by the changed pressure profile outside
the droplet. A comparison between numerical simulations and
experimental data at non-unit viscosity ratios is not yet available in
literature. The VOF method was recently extended to take into
account the viscoelasticity of the components [61]. Therefore, 3D
simulations of confined droplet dynamics during shear flow in
systems containing viscoelastic components have become acces-
sible, but so far comparison with experimental data is restricted to
bulk conditions [20].

3.2.2. Droplet dynamics during start-up of shear flow
In addition to the increased steady-state droplet deformation

and droplet orientation in confined shear flow, substantial
changes in the droplet dynamics during transient flow conditions
were also observed. For the simple case of Newtonian–Newtonian
systems, this time-dependent deformation and orientation were
Fig. 8. Effect of viscosity ratio on start-up transients at low Ca. Comparison between expe
dimensionless droplet axes at 2R/d¼ 0.73 and Ca¼ 0.2. The absolute time t is scaled with the
[47]. Copyright� 2008 by The Society of Rheolgy, Inc. All rights reserved.
experimentally investigated by Sibillo et al. [51] for a viscosity
ratio of 1 and by Vananroye et al. [47] for a broad range of
viscosity ratios. At low values of the capillary number, the droplet
deformation and orientation evolve monotonously towards their
steady-state values [47]. Longer shearing times are required
however, to reach steady state [47]. Vananroye et al. demonstrated
that the Minale extension for confinement [50] of the Maffettone–
Minale model [41,42] at least qualitatively captures these trends. A
comparison between model predictions and experimental data
for three different viscosity ratios is shown in Fig. 8. For highly
confined droplets sheared under near-critical conditions, one or
more overshoots in the droplet deformation have been experi-
mentally observed [51]. In addition, the timescales required to
reach steady-state conditions increase with an order of magnitude
compared to the bulk case. These overshoots become less
pronounced when the viscosity ratio is high [47]. The Minale
extension for confinement [50] of the Maffettone–Minale model
[41,42] is not capable of reproducing the experimentally observed
overshoots [47].

On the other hand, with both the VOF and BIM simulation
methods discussed in Section 3.1, quantitative agreement with the
oscillation transients was obtained for a viscosity ratio of 1 [54,60].
A comparison between the experimental results and VOF simula-
tions is shown in Fig. 9. The maximum in the deformation can be
explained by the fact that the tips of the stretching droplet are
pushed away from the walls. Then, the droplet orientation angle
reduces, and the droplet experiences a much weaker flow and
retracts [52,54]. Contrary to the situation in bulk shear flow, a high
shear rate exists in the space between drop tip and wall, with
substantial recirculation flows on both sides of the droplet [52,54].
Since it was shown that the droplet orientation is more sensitive to
wall effects at low viscosity ratios [59], more pronounced over-
shoots are expected for these systems, in agreement with the
experimental results [47].

3.2.3. Droplet retraction upon cessation of shear flow
Whereas the droplet deformation is affected by the presence

of the walls for confinement ratios 2R/d of 0.3 and higher, one
might expect, based on the dilute blends studies [39], that the
retraction of single droplets upon cessation of flow is less
sensitive to confinement. Vananroye et al. [47] investigated this
for viscosity ratios between 0.3 and 2 and observed that only
highly confined droplets relax slower compared to unconfined
droplets. This is in agreement with the observations of Son and
rimental data (symbols) and predictions of the confined Minale model (lines) for the
characteristic emulsion time s. Reprinted figure with permission from Vananroye et al.



Fig. 9. Dynamics of droplets during start-up of flow at high Ca. Comparison between
experimental data and numerical simulations with the VOF method at p¼ 1, Ca¼ 0.4
and 2R/d¼ 0.68. a¼ R. With kind permission from Springer Science þ Business Media:
Rheologica Acta, The effects of confinement and inertia on the production of droplets,
46, 2007, p. 521, Renardy Y., Figure 2 [54]. Copyright (2007).
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Migler [62] who studied the retraction of axisymmetrical drop-
lets, which were obtained from a retracting imbedded fibre,
confined between two parallel plates. For their system, consisting
of two polymer melts at a viscosity ratio of 0.25, wall effects on
the relaxation only start to appear at a confinement ratio 2R/d of
0.5. Vananroye et al. [47] compared the droplet relaxation to the
predictions of the confined Minale model [50], as illustrated in
Fig. 10 for a viscosity ratio of 1. According to the model, the effect
of confinement on droplet relaxation is already substantial at
lower degrees of confinement, which is not in line with the
experiments. At high degrees of confinement however, the Min-
ale model predictions are in good agreement with the data. At
very high confinement ratios, not only the relaxation kinetics, but
also the qualitative relaxation behaviour is altered by the pres-
ence of the walls. Son and Migler [62] mentioned the transition
from an axisymmetrical droplet towards an ellipse flattened in
the direction perpendicular to the walls. Cardinaels et al. [63]
noticed that the sigmoidal droplet shapes at high confinement
Fig. 10. Effect of confinement ratio on droplet retraction. Comparison between
experimental data and predictions of the confined Minale model during relaxation
after steady shear flow at Ca¼ 0.3 with p¼ 1. Lp and Lp0 represent the major axis of the
ellipsoid’s projection on the velocity–vorticity plane on time t and 0 respectively.
Reprinted figure with permission from Vananroye et al. [47]. Copyright� 2008 by The
Society of Rheolgy, Inc. All rights reserved.
ratios result in a deviation from the well-known exponential
relaxation curves. These authors also studied droplet relaxation in
systems with one viscoelastic component. Under bulk conditions,
matrix viscoelasticity retards the droplet relaxation, while hardly
any influence of droplet viscoelasticity on the relaxation kinetics
was noticed. Similar to fully Newtonian systems, confinement
causes the droplets to retract slower. For blends containing
a viscoelastic matrix however, the relaxation kinetics is less
influenced by confinement. This is most probably due to the
slower droplet relaxation in a viscoelastic matrix, which provides
more time for the matrix fluid to be squeezed out between the
plates and the droplet.

3.2.4. Droplet breakup
When the capillary number is sufficiently increased, droplets

might breakup. For a viscosity ratio of 1, Sibillo et al. [51]
demonstrated that confinement hardly affects the critical capil-
lary number that describes breakup in bulk flow conditions. A
systematic study of the effect of confinement on the near-critical
breakup process for a broad range of viscosity ratios was con-
ducted by Vananroye et al. [64]. For a viscosity ratio of 1, the
observations of Sibillo et al. [51] were confirmed. However, for
viscosity ratios below 1, Vananroye et al. showed that the critical
capillary number increases with increasing confinement, indi-
cating that confined droplets are stabilized by the presence of the
walls. At viscosity ratios above 1, it was seen that the critical
capillary number decreases, thus confinement promotes breakup.
These authors also showed that even droplets with viscosity
ratios above 4, which are unbreakable in bulk shear flow, can still
be broken in confined conditions. The experimental results are
summarized in Fig. 11 together with the predictions of the
confined Minale model [50]. Although the model can qualitatively
predict the observed trends, it is not quantitative. This is not
surprising since at breakup conditions, the droplet shape is far
from an ellipsoidal one.

For confinement ratios 2R/d very close to 1, Sibillo et al. [51]
showed an interesting new breakup mode in which three droplets
with comparable droplet sizes are formed, in contrast with bulk
breakup where the central fragments are generally much smaller
than the main daughter drops. The experimentally observed tran-
sition from binary to ternary breakup [51,59] was reproduced by
both the BIM [52] and the VOF simulations [54]. Renardy [54]
Fig. 11. Effect of viscosity ratio and confinement on the droplet breakup criterium.
Comparison between experimental data (symbols) and predictions of the confined
Minale model (lines). The critical Ca number is scaled with its bulk value. With kind
permission from Springer Science þ Business Media: Rheologica Acta, A phenome-
nological model for wall effects on the deformation of an ellipsoidal drop in viscous
flow, 47, 2008, p. 667, Minale M., Figure 13 [50]. Copyright (2008).
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attributes this to the increased shear rate at the drop tips, which
prevents them from evolving into dumbbells, as in unbounded
shear flow. Recently, Cardinaels et al. [59] have demonstrated that
the number of equally sized daughter drops increases with
confinement ratio. In addition, the transition from bulk breakup to
confined breakup with multiple neckings was shown to shift
towards more confined conditions for systems with a high viscosity
ratio or containing a viscoelastic matrix.

4. Conclusions

In this review, the morphology development of immiscible
blends confined between two shearing parallel plates is dis-
cussed. An overview is given on the different peculiar structures
that are observed in dilute confined blends containing New-
tonian components. Depending on the gap spacing, volume
fraction, and shear rate, a richness of morphological states such
as layered structures, pearl necklaces, strings, ribbons, and
squashed droplets appear. In order to gain more insight into the
formation of such structures, relationships between the flow and
the structure dynamics in a confined environment are needed
at the level of single droplets. Confinement can substantially alter
the droplet deformation, droplet orientation and droplet breakup
during steady-state and transient shear flow. Under rather mild
conditions of shear and confinement, the analytical theories and
models for confined droplets are capable of describing the
droplet shape and droplet orientation rather accurately. Recently,
3D numerical simulations of the droplet behaviour in confined
shear flow have emerged. It has already been demonstrated for
a viscosity ratio of 1 that such simulations accurately predict the
droplet dynamics and the sigmoidal droplet shape under a wide
range of conditions. Moreover, the simulated pressure and
velocity fields provide valuable insights into the underlying
physics. For more concentrated systems however, a complete
understanding of the morphology development in a confined
geometry is not yet obtained. Additionally, real industrial blends
typically consist of viscoelastic components, are often compati-
bilized, and are processed in rather complex flow fields.
Although preliminary results on the behaviour of confined single
droplets in systems with viscoelastic components are available,
the effect of confinement on the behaviour of these more
complex systems or under complex flow conditions is largely
unexplored.
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